
GOMS, GOMS+, and PDL

Michael Freed and Roger Remington
NASA Ames Research Center

Abstract: The expressiveness of the GOMS language for describing
“how-to” knowledge determines what kinds of human activities can
be captured by a GOMS task analysis. This paper addresses the
adequacy of this framework for representing human behavior in
realistically time-pressured, uncertain, and otherwise demanding task
environments. Several improvements have been incorporated into a
GOMS-like formalism called Procedure Description Language (PDL)
and into a simple GOMS extension called GOMS+.

1 GOMS

Computer simulation has become
an indispensable design aid for
devices ranging from electronic
circuits to automobile engines.
Applying this technique to the
design of human-machine systems
would be desirable, but modeling
the human components of these
systems poses significant
challenges. Researchers have
addressed these by developing a
variety of frameworks for human
performance modeling. Among
these, GOMS (Card, Moran, &
Newell, 1984) has become the most
well-known and widely used.

GOMS is a formal language for
representing how human operators
carry out specified routine tasks. It
consists of four constructs: goals,
operators, methods, and selection-
rules (hence the GOMS acronym).

Goals represent desired actions or
world states – e.g. GOAL:(delete-
file file-32) expresses a desire to
remove (access to) a computer file
called file-32. GOMS interpreter1
mechanisms determine behavior by
mapping goal structures to
sequences of operators, each
representing a basic physical or
cognitive skill such as shifting gaze
to a new location, or grasping an
object.

The GOMS approach assumes
that the modeled agent has already
learned one or more methods for
accomplishing any goal. A
method, available in a modeled
agent’s “method library,” is used to
decompose a goal into a sequence

1 Interpretation rules that define GOMS semantics can
be incorporated into a computer program, allowing
simulation of a GOMS agent. Though the
interpretation function is often carried out “by hand”
(John and Kieras, 1994), longer, more complicated
tasks require automation.

of subgoals and operators. For
instance, the method below
(specified informally) might be
used to achieve the file deletion
goal. Some steps of the method
(e.g. steps 3 and 6) correspond to
operators and can thus be executed
directly. The others define
subgoals that must be recursively
decomposed using methods from
the method library until an operator
sequence is fully specified.2

Method-126 for goals of form
(delete-file ?file)

1. determine ?location of ?icon
for ?file

2. move-mouse-pointer to
?location

3. press-with-hand mouse-
button

4. determine ?location2 of
trash-icon

5. move-mouse-pointer to
?location2

6. release-hand-pressure
mouse-button

When there is more than one

way to achieve a goal – i.e.
alternative methods are available –
a selection rule must be used to
decide between them. For instance,
one alternative way to delete a file
(call it method-823) may be to use
a search utility designed to locate
named files in a large file directory
structure, and then use the utility’s

2 Throughout this paper, a leading question mark will
be used to indicate a variable.

delete option once the target file
has been found. A selection rule
for deciding between these methods
might incorporate knowledge that
method-126 is more convenient and
therefore preferable as long as the
location of the file is known. Thus:

 Selection-rule for goal:(delete-

file ?file)
IF known (location ?file)
THEN do method-126
ELSE do method-823

Nothing in the GOMS

architecture specifies human
behavioral characteristics that
would naturally produce human-
like behavior. GOMS could just as
easily be used to describe the
action-selection behavior of an
insect, superhero or robot. For
example, in GOMS, one could
easily define a method for parking
a car that involved picking the
vehicle up and placing it in the
desired location; nothing about
GOMS makes this less desirable
than a method more in line with
typical behavior. Since many of the
performance predictions one would
wish to make with GOMS require a
model of human attributes (e.g.
strength limitations), GOMS is
often coupled with a human
attribute model such as the Model
Human Processor (Card, Moran, &
Newell, 1984). Efforts to make
GOMS a more powerful tool have
focused almost exclusively on

refining the model of human
attributes, particularly temporal
attributes of behavior such as the
time needed to press a button or
shift gaze (Olson and Olson, 1989;
John and Kieras, 1994). The
GOMS language itself has
remained unchanged.

The expressiveness of the
GOMS language for describing
“how-to” knowledge determines
what kinds of human activities can
be captured by a GOMS task
analysis. In some ways, this
language is clearly inadequate for
describing even mundane
behaviors. For example, people
generally know to delay deciding
which elevator door to move
towards until there is some
indication of where the next
elevator will arrive. People’s
ability to delay in this case
illustrates a general and crucial
human capability: to wait until
information becomes available
(uncertainties are resolved) before
committing to a course of action.
GOMS does not support this
capability.

In this paper, we turn our
attention to the adequacy of the
GOMS notation for representing
human behavior in task
environments that are realistically
time-pressured, uncertain, and
otherwise demanding. The problem
of characterizing agent capabilities
needed for a given task
environment has long been a focus

of research within subfields of
artificial intelligence concerned
with planning and plan execution.
The resulting understanding can be
roughly broken down into two
main areas: (1) capabilities needed
to cope with uncertainty; and (2)
capabilities needed to manage
multiple, interacting tasks. The
following sections discuss how
capabilities in these areas have
been incorporated into a GOMS-
like formalism called Procedure
Description Language (PDL). PDL
was developed as part of the APEX
human modeling framework, a tool
for predicting usability problems in
complex, dynamic task domains
such as air traffic control. A subset
of these improvements has been
incorporated into GOMS+, a
simple extension to GOMS that
may appeal to APEX users for its
simplicity and familiarity.
2 PDL

The central construct of the APEX
Procedure Definition Language
(PDL) is the procedure, closely
analogous to the GOMS method3.
The procedure consists of an index
clause followed by one or more
step clauses. The example
procedure below represents how-to

3A procedure generalizes the idea of method to include
auxiliary activities such as post-completion behaviors
(e.g. putting away the tools after a repair task), failure-
handling actions (if turning the ignition key doesn’t
work, try again) and interruption-handling actions
(apologize when interrupting a phone conversation).
The term task generalizes on goal in an analogous way.

knowledge for the routine behavior
of turning on an automobile’s
headlights.

 (procedure

(index (turn-on-headlights)
 (step s1 (clear-hand left-hand))
 (step s2 (determine-loc
headlight-ctl => ?loc)

(step s3 (grasp knob left-hand
?location)

(waitfor ?s1 ?s2))
(step s4 (pull knob left-hand)

(waitfor ?s3))
(step s5 (ungrasp left-hand)

(waitfor ?s4))
 (step s6 (terminate) (waitfor
?s5)))

The index clause indicates that

the procedure should be retrieved
whenever a goal of the form (turn-
on-headlights) becomes active.
Step clauses primarily describe
activities needed to accomplish the
goal. Steps are assumed to be
concurrently executable. For
instance, step s1 above for clearing
the left hand (letting go of any held
object) and step s2 for locating the
headlight controls do not need to be
carried out in any particular order
and do not interfere with one
another; they may proceed in
parallel. When order is required,
usually because finishing one step
is a precondition for starting
another, this can be specified using
a waitfor clause. For instance, one
should not begin grasping the

headlight control until its location
is known and the hand that will be
used to grasp it is free. These
preconditions are indicated by the
waitfor clause embedded in step s3.
The following two sections
describe how the issues of
uncertainty-handling and multitask
management are addressed in PDL.
Other aspects of PDL, including
mechanisms for selecting between
alternative procedures, managing
periodic behavior, and adapting to
varying degrees of time-pressure,
are discussed in Freed (1998).

2.1 Coping with uncertainty

Some of the most important recent
advances in AI concern how agents
can act effectively in uncertain task
environments. Early agent
architectures were designed to
operate in very simple
environments in which all relevant
aspects of the current situation
(world state) are known, no change
occurs except by the agent’s action,
and all of the agent’s actions
succeed all of the time. Most real-
world domains are not so benign.

Uncertainty arises from a
variety of factors. First, many real
task environments are far too
complex to observe all the
important events and understand all
the important processes. Decisions
must therefore sometimes be made
on the basis of guesswork about
what is currently true and about

what will become true. Similarly,
real task environments are often
dynamic. Forces not under the
agent’s control change the world in
ways and at times that cannot be
reliably predicted. Previously
accurate knowledge of the current
situation may become obsolete
when changes occur without being
observed.

Additional sources of
uncertainty arise from the nature of
the agent itself. Motor systems
may be clumsy and imperfectly
reliable at executing desired
actions. Perceptual systems may
intermittently distort their inputs
and thus provide incorrect
characterizations of observed
events. Cognitive elements may
lose or distort memories, fail to
make needed inferences, and so on.

Together, these various sources
of uncertainty have a profound
effect in determining what kinds of
capabilities an agent requires to
perform effectively. For example,
the possibility that some action will
fail to achieve its desired effect
means that an agent needs some
way to cope with possible failure.
Thus, it may require specialized
mechanisms that formulate explicit
expectations about what observable
effect its action should achieve,
check those expectations against
observed events, then, if
expectations fail, generate new
goals to recover, learn and try
again.

PDL provides means for coping
with several forms of uncertainty.
The first, uncertainty about a future
decision-relevant world state, is
illustrated by the problem of
deciding which elevator door to
approach. A knowledgeable
elevator user will usually delay
committing to one door or the other
until there is information about
which will arrive next. This
exemplifies a general strategy:
delay decisions until relevant
information becomes available. As
seen in the procedure below, such
strategies are represented using the
waitfor clause.
 (procedure

(index (enter-first-available-
elevator))

(step s1 (summon-elevator))
(step s2 (approach-elevator-door

?door)
(waitfor ?s1 (open-door

?door)))
(step s3 (enter-door ?door)

(waitfor ?s2))
(step s4 (reset ?self)

(waitfor ?s2 (closed-door
?door)))

(step s5 (terminate) (waitfor
?s3)))

In this procedure, the task of

approaching an elevator door (step
s2) does not begin until after an
elevator has been summoned and
its door has opened. When the
latter event occurs, perceptual
mechanisms detect an event of the

form (open-door ?door); this
causes the variable ?door to
become bound to a mental
representation of the newly opened
door, thus resolving uncertainty
about which elevator should be
selected.

Waiting passively for new
information to resolve uncertainty
is one of three typical strategies.
The others are actively seeking
information and gambling (making
a best guess). Active seeking is
accomplished without any special
PDL constructs. Procedures must
simply initiate actions such as
shifting gaze or physically
removing a visual obstruction that
result in new information becoming
available. Gambling strategies can
be encoded in several ways. The
simplest is to incorporate a best
guess directly into a procedure.
For example, if the left elevator
door is almost always the first to
open, step s2 in the procedure
above might be replaced by:

 (step s2 (approach-elevator-door
left-door)

(waitfor ?s1))

PDL and its interpreter support
a variety of gambling strategies,
each of which takes advantage of
some kind of heuristic decision-
making bias. For instance,
assuming that the most frequent
condition will hold in the current
case (e.g. the left elevator appears

first usually, so it will this time as
well) constitutes reliance on
frequency bias. PDL supports
this and other forms of bias4 with
mechanisms that dynamically
adjust how much influence bias has
on a decision. Bias that is normally
be weak and not relied upon may
be strengthened in time-pressured
situations or high-workload
situations. Conversely, strong bias
may be suppressed in some
situations, especially in response to
recently observed counterevidence.
For instance, strong frequency bias
may lead to a habit of approaching
the left elevator in anticipation of
its arriving first. But upon seeing a
sign claiming that the left elevator
is under repair, the agent may
revert to a watch and see strategy.
Heuristic biases are a pervasive and
quite useful element of normal
decision-making, but they can also
lead to error (Reason, 1990). PDL
support for representing biases
makes it possible to represent
cognitive mechanisms underlying
error and thus facilitates error
prediction (Freed and Remington,
1998).

PDL can also be used to
represent knowledge about how to
handle a second form of
uncertainty that arises when actions

4 Frequency bias is a tendency to do or believe
what is usually the case. Recency bias is a
tendency to do or believe what was true last time.
Confirmation bias is a tendency to do or believe
what accords with one’s expectations.

have more than one possible
outcome. Multiple outcomes,
particularly those constituting
failure, require mechanisms for
classifying the outcome and
selecting an appropriate response.
The procedure above provides a
very simple example. Consider the
case where, while trying to enter an
open elevator door (step s3), the
agent sees the door close. This
should be construed as goal failure,
causing the agent to try again.
PDL provides an operator (low-
level behavior) called reset for
restarting (retrying) a task. Reset
appears in step s4, and is invoked
conditionally in response to seeing
the elevator door close.

2.2 Managing multiple tasks

PDL and its interpreter were
originally developed to represent
the behavior of human air traffic
controllers. As with many of the
domains in which human
simulation could prove most
valuable, air traffic control consists
mostly of routine activity;
complexity arises primarily from
the need to manage multiple tasks.
For example, the task of guiding a
plane to a destination airport
typically involves issuing a series
of standard turn and descent
authorizations to each plane. Since
such routines must be carried out
over minutes or tens of minutes, the
task of handling any individual

plane must be periodically
interrupted to handle new arrivals
or resume a previously interrupted
plane-handling task.

The problem of coordinating
the execution of multiple tasks
differs from that of executing a
single task because tasks can
interact, most often by competing
for resources. In particular, each of
an agent’s perceptual, motor and
cognitive resources are typically
limited in the sense that they can
normally be used for only one task
at a time. For example, a task that
requires the gaze resource to
examine a visual location cannot be
carried out at the same time as a
task that requires gaze to examine a
different location. When separate
tasks make incompatible demands
for a resource, a resource conflict
between them exists. To manage
multiple tasks effectively, an agent
must be able to detect and resolve
such conflicts.

The PDL interpreter determines
whether two tasks conflict by
checking whether they both require
control of a resource. Resource
requirements for a task are
undetermined until a procedure is
selected to carry it out. For
instance, the task of searching for a
fallen object will require gaze if
performed visually, or a hand
resource if carried out by grope-
and-feel. PDL denotes a
procedure’s resource requirements
using the profile clause. For

instance, adding the clause (profile
(left-hand 8 10)) to the turn-on-
headlights procedure declares that
turning on headlights conflicts with
any other task that requires the left-
hand.5

To resolve a detected resource
conflict, decision-mechanisms must
determine the relative priority of
competing tasks, assign control of
the resource to the winner, and
either shed, defer, or interrupt the
loser. To compute relative priority,
the interpreter uses information
provided in priority clauses. The
simple form of a priority
declaration specifies a numeric
priority value ranging from 1 to 10.
Alternately, a priority clause can
specify urgency and importance
values related to a specified source
of priority.

(step s3 (enter-door ?door)

(waitfor ?s2)
 (priority miss-elevator :urg 6

:imp 2))

For example, the step above for
entering an elevator derives priority
from the possibility that the
opportunity to board will be missed
if the task is delayed too long.
Urgency is fairly high to denote a
limited window of opportunity.
Since missing the elevator is

5 The profile clause and all other PDL constructs
related to multitask management are discussed in
detail in (Freed, 1998b).

usually far from catastrophic,
importance is low.

In realistically demanding
environments, several additional
factors need to be considered in
determining priority. For instance,
a task’s urgency and importance
may be context-dependent (not
constant-valued), and may in fact
vary dynamically over the lifetime
of a task. PDL allows users to
specify how these values should be
computed and under what
circumstances they should be
recomputed. A task may have
several associated priority clauses,
reflecting separate reasons to do the
task sooner rather than later. For
instance, the need to enter an
elevator expeditiously could stem
from a desire to get in before it
closes and also a desire to get in
ahead of others.

The possibility that a task might
be interrupted presents additional
issues. First, handling an
interruption often entails carrying
out transitional behaviors. For
instance, interrupting a driving task
typically involves doing something
to keep from crashing such as
pulling over to the side of the road.
To facilitate such transitions, the
PDL interpreter generates an event
of the form (suspended <task>)
whenever <task> is interrupted.
The step below within the body of
the driving procedure would
produce this behavior:

(step s15 (pull-over)
 (waitfor (suspended ?self))

Second, continuity bias, the

tendency to continue executing an
ongoing task rather than switch to
an interrupting task, is represented
with an interrupt-cost clause. We
currently assume that the degree of
continuity bias depends on
objective factors that make an
interruption costly – e.g. having to
engage in otherwise unnecessary
transition behaviors, having to
make up lost progress on the main
task, and so on. Interrupt cost
raises a task’s importance, and thus
it’s priority. Unlike a priority
clause, which applies whenever a
task is eligible to be executed,
interrupt-cost only applies to
ongoing tasks.

Third, it should be possible to
take advantage of slack-time in a
task’s need for given resources.
For example, when stopped behind
a red light, a driver’s need for
hands and gaze is temporarily
reduced, making it possible to use
those resources for other tasks.
Such within-procedure resource
control strategies are specified
using the suspend and reprioritize
operators. Suspend allows a
procedure to interrupt itself,
relinquishing control over
resources and thus making them
temporarily available to lower
priority tasks. Reprioritize causes
the primary task to resume

competing for resources, normally
resulting in its acquiring them from
tasks active during the slack
interval. E.g.:

 (step s18 (reprioritize)

(waitfor (color ?traffic-light
green)))

would allow a driving task that
self-suspended in response to a red
traffic light to resume.

3 GOMS+

For APEX users more comfortable
using GOMS than PDL, we have
developed a GOMS
implementation called GOMS+ that
incorporates several of the
capability extensions discussed in
this paper. As with GOMS,
methods in GOMS+ are action
sequences. Behaviors that are
contingent or off critical-path (such
as those needed to handle failure)
cannot be represented.

 (method 1 for (turn-on-
headlights))
 (requires left-hand)
 (do-in-parallel
 (clear-hand left-hand)

 (determine-loc headlight-
control => ?loc))
 (grasp knob left-hand ?loc)
 (pull knob left-hand)

 (ungrasp left-hand))

 (method 1 for (enter-first-
available-elevator)
 (summon-elevator)
 ((approach-door) (waitfor
(open-door ?door))
 (enter-door ?door))

The GOMS+ methods above
illustrate several features of the
language. The construct do-in-
parallel enables some concurrent
behavior. For example, the clear-
hand and determine-location steps
of the turn-on-headlight method are
concurrently executable. Some
versions of GOMS already allow
concurrent action, but only between
operator-level behaviors; steps
declared within the scope of a do-
in-parallel clause can represent
either operators or non-operators
that will have to be decomposed
into subgoals. GOMS+ includes a
second construct for concurrency
control called race. Steps declared
within a race clause are carried out
in parallel until any one step
completes; at that point, the rest are
forced to completion (aborted).

GOMS+ also adopts the waitfor
clause. Since steps of method are
sequentially ordered by default,
there is no need to use waitfors to
declare step order; in all other
ways, the clause is used as a
generic precondition declaration,
just as in PDL. As previously
noted, this is particularly useful for
delaying actions until information

becomes available to resolve
decision-relevant uncertainty.

The decision not to allow
representation of contingent
behaviors in GOMS+ means that
sophisticated multitask
management capabilities (which
rely heavily on such behaviors)
cannot be implemented. However,
two multitasking constructs have
been included. The priority clause
assigns a fixed numeric priority to a
method step and is used to choose
between two simultaneously active
goals (cf. John, Vera, and Newell,
1990). Note that this condition
only occurs within the dynamic
scope of a do-in-parallel/race
clause or when multiple initial
goals have been asserted. The
requires clause declares that a
method requires some resource
such as the left hand (see turn-on-
headlights procedure above).
Actions that would otherwise be
executable in parallel but require
the same resource must be carried
out sequentially. If the conflicting
tasks have priority values, the
higher valued task is done first;
otherwise order is determined
randomly.

Finally, GOMS+ includes the
repeat-until clause for
representing certain repetitive
behaviors. This is mainly useful
where goals are achieved by the
cumulative effect of repetitive
action. For example, one might
repeat a dig action until a hole of

specified depth has been created or
repeat a stirring action until food
obtains a desired consistency.
Certain forms of repetitive behavior
require careful multitask
management and therefore cannot
be represented in GOMS+; these
include especially maintenance
behavior such as periodically
scanning instruments on a flight
deck or dashboard to maintain
situation awareness. Other forms
are being considered for inclusion
in the language including repeat-
times to repeat an action a
specified number of times, and
repeat-at-interval to cause an
action to repeat after a specified
amount of time has passed.

4 Conclusion

GOMS is essentially a special-
purpose programming language for
specifying agent behavior.
Evaluating its effectiveness in this
regard means asking a set of
questions well-known to
programming language users and
designers. For example, does it
have a clear and unambiguous
semantics? Is it elegant? Intuitive?
But most important is: can desired
behaviors be expressed effectively
and conveniently? A well-designed
language anticipates the uses to
which it will be put by providing
terminology and structure for those
uses. For GOMS, that means
providing constructs to represent

common elements of intelligent
behavior.

In its original form, GOMS
incorporates three such elements:
the use of predefined action
sequences to achieve common
goals, the ability to select between
alternative action sequences, and
the ability to define goals at
varying levels of abstraction,
entailing recursive decomposition
into subgoals. If one could choose
to incorporate only 3 facets of
intelligent behavior in a model,
perhaps these would be the best
choices.

In our view, there is no reason
to employ so parsimonious a
language. Extreme simplicity
makes it easy to interpret GOMS
notations; but this virtue recedes in
importance once the interpretation
process has been incorporated into
a computer program. Ease of
learning trades off against
inexpressiveness if users have to
spend time struggling to
circumvent the language’s
limitations. Human behavior is
rich and varied, especially in the
realistically demanding task
environments where human
performance modeling could be
most valuable. With PDL and
GOMS+, we hope to make it
possible and practical to construct
such models.

5 References

Card, S.K., Moran, T.P., & Newell,
A. (1983). The psychology of
human-computer interaction.
Hillsdale, NJ: Lawrence Erlbaum
Associates.

Freed, M. (1998a) Simulating
human performance in complex,
dynamic environments. Ph.D.
Dissertation, Department of
Computer Science, Northwestern
University.

Freed, M. (1998b) Managing
multiple tasks in complex, dynamic
environments. In Proceedings of
the 1998 NationalConference on
Artificial Intelligence. Madison,
Wisconsin.

Freed, M. and Remington, R.
(1998) A conceptual framework
for predicting error in complex
human-machine environements.
Proceedings of the 20th Conference
of the Cognitive Science Society.
Madison, Wisconsin.

Gray, W. D., John, B. E., Atwood,
M.E. (1993). Project Ernestine:
Validating a GOMS analysis for
predicting and explaining real-
world task performance. Human
Computer Interaction, 8, 237-309.

John, B.E. and Kieras, D.E.
(1994). The GOMS Family of
Analysis Techniques: Tools for
Design and Evaluation. Carnegie

Mellon University, TR CMU-CS-
94-181.

John, B.E. and Vera, A. (1992) A
GOMS analysis of a graphic,
machine-paced, highly interactive
task. Proceedings CHI’92, ACM,
251-258.

Olson, J.R. and Olson G.M. (1989)
The growth of cognitive modeling
in human-computer interaction
since GOMS. Human Computer
Interaction.

Reason, J.T. (1990) Human Error.
Cambridge University Press, New
York, N.Y.

